Skip to main content

The new systems allow researchers to control qubits better than any time before.

  The new systems allow researchers to control qubits better than any time before. 


The new observations about electron's permanent dipole movement are pathfinders for atom-size quantum computers. Precisely working quantum computers require the ability to control the system with extremely high accuracy. That ability requires that the system can observe its actor and a new type of sensor makes it possible to create new types of qubits. The ability to measure electrons' dipole movement makes it possible to create sterile photons with high-accurate energy levels.

Because the system sees the actor like electrons it can shoot very highly accurate laser beams into those quantum systems. If the system can make atom-size quantum computers those systems will be the most advanced tools that researchers have ever created before. 

The atom-size quantum computer that operates at room temperature can turn even nanomachines intelligent. In some visions, researchers can put atom-sized quantum computers inside living neurons, and those systems could make a new type of boost for neural networks. Those atom-size quantum computers can have microscopic chambers where they operate by using neural electricity. Those small systems might exchange information between neurons. And that thing can give a boost to the abilities of the insects. 


"MIT researchers have successfully controlled quantum randomness using “vacuum fluctuations,” introducing a breakthrough in probabilistic computing with potentially wide-ranging applications." (ScitechDaily.com/Harnessing the Void: MIT Controls Quantum Randomness For the First Time)



"A new study offers the most precise measurement to date of the electron’s permanent electric dipole moment, providing critical insight into the imbalance between matter and antimatter in the Universe. The study used electrons confined in molecular ions to improve the previous best measurement by a factor of about 2.4, aiding efforts to refine or extend the standard model of particle physics". (ScitchDaily.com/Cracking One of the Universe’s Biggest Mysteries: “The Most Precise Measurement Yet” of Electron’s Permanent Electric Dipole Moment) 



"Using laser light, researchers have innovated a precise method to control individual barium qubits, advancing prospects for quantum computing". (ScitechDaily.com/Laser Precision Qubit Control: Leap in Reliable Quantum Information Processing)


The ability to control the quantum randomness makes it possible to create new quantum systems with better error-handling capacity. 


What if we put qubit in the bubble, or some kind of cosmic void? That thing makes it possible to eliminate the outcoming radiofrequency radiation. The control of the qubit can made by using lasers. The idea is that the miniature void. That is made by using extremely high-energy electrons. 

A laser or some maser system inputs energy to that electron which forms the protective field over qubit. The idea is that the electron sends radiation that power is easy to calculate. And then that radiation keeps the natural radiation with randomly changing energy levels away from the qubit. The idea is that the calculated and controlled field covers the non-calculated field. 

The ability to control quantum randomness removes the disturbance from quantum systems. And that thing makes it possible to understand, model, and control the quantum systems. The ability to control quantum systems and calculate the outcoming effects makes it possible to create quantum calculators that have better error tolerance. 

Theoretically is quite easy to remove the outcoming radiation effect from quantum computers. The system must know the qubit's original energy level and then the level of outcoming energy. 

Then the system must just reduce the outcoming energy from the final energy level. (Final energy level-original energy level). Of course, the system must follow outcoming energy during the entire operation. And then it must know things like frequency, wavelength, and other kinds of things about the outcoming energy. 

But if the system knows all the necessary variables and makes the right calculations at the right time. That thing makes it possible to create new quantum systems with higher error tolerance. Or the system can control and detect errors better. 


https://scitechdaily.com/laser-precision-qubit-control-leap-in-reliable-quantum-information-processing/

https://scitechdaily.com/cracking-one-of-the-universes-biggest-mysteries-the-most-precise-measurement-yet-of-electrons-permanent-electric-dipole-moment/

https://scitechdaily.com/harnessing-the-void-mit-controls-quantum-randomness-for-the-first-time/


Comments

Popular posts from this blog

The new 3D printers are coin-size systems.

"The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation. Credit: Sampson Wilcox, RLE" (Scitech, Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket) Researchers created a 3D printer that is coin-size. That kind of printer can create things like microchips. But it's possible. Those tiny 3D printers can also work in extremely large-size projects. In simplest models, the 3D printers are positioned on tracks. The 3D printer itself is the tool, that can be part of the modular production systems.  There are visions of high-temperature metal printers installed on the gantry cranes. That makes those crane printers that can make even ship-size things. The crane that the printer controls can move back and forth and the printer can move horizontally. This kind of thing can turn the crane into a high-temperature 3D printer, that

Quantum computers and ultra-fast photonic microchips can danger even the most secure communication.

"Quantum computers could pose a major security risk to current communication systems in 12-15 years with their exponentially greater speed and code-breaking ability. (ScitechDaily, Today’s Most-Secure Communications Threatened by Future Quantum Computers) Quantum computers can break entire binary cryptography. And that makes all communication unsecured. That is one of the greatest threats in quantum computing. And this brings the arms race to the quantum age. The quantum computer can create codes that any binary computer can break. But the quantum computer can also break old-fashioned codes. And that makes it an ultimate weapon and sabotage tool.   Quantum computers can change the measurements of the ammunition in factories by changing the system calibration. Or it can delete databases from the opponent's computer systems. This thing can delete all SIM cards from mobile telephones. In peacetime, the hackers that operate using quantum systems can steal the names of the counter-

Electric power innovations. Fuel cells in aircraft and solar panels over Arizona canal.

  "ZEROe teams powered on the iron pod, the future hydrogen-propulsion system designed for Airbus’ electric concept aircraft." (Intersting Engineering, Airbus's ZEROe: First engine fuel cell powers up for hydrogen flight) Electric power innovations. Fuel cells in aircraft and solar panels over Arizona canal.  Airbus Zero is a testbed for fuel cells that are used in commercial aircraft. The problem with aircraft is always noise and pollution. If the aircraft uses electric engines. That decreases noise levels and cleans the air, especially around airfields. Lightweight solar panels that can be installed on the wings and body of aircraft can give electricity to electric engines. And they can extend an aircraft's operational range.   The thing that makes this kind of system interesting is that the "flying cars" or cheap VTOL aircraft can use them as a power source. The hydrogen power cells can give energy to electric aircraft at night time. And that makes them m