Skip to main content

The new humanoid robots break limits.



The new humanoid robots are more fantastic than nobody thought. The BMW's new humanoid manufacturing robots are impressive tools. When humanoid robots work in manufacturing platforms under the dome of the full-scale WIFI transmission and the control of the same supercomputer, they can form multi-level morphing neural networks. They can communicate with supercomputers or with each other. And that is the impressive thing. 

The robots that understand accents are easier to control using spoken words. They can understand natural languages, and people's natural way of communicating. In regular robotics, the user must use grammatically correct language. But modern robots and computers have started to follow orders, that accent-using users can give. The first portal in those systems is the speech-to-text application that transforms spoken words into text. That it drives to the robot's control. 

The system requires only an accent wordbook that can translate orders to literal language and commands that the system must follow. The new ultra-fast processors can drive AI that can remove unnecessary words from the text that the speech-to-text application makes. 


So the system uses the same method as translation programs. And translation programs make it possible. That user can give orders to robots using their language. 


But if those robots are equipped with the sense of touch and the remote VR headsets and systems that bring a sense of touch to the human nervous system from the virtual reality. That thing allows the robot can transmit all its senses to the human operator, who smells, sees, touches, hears, and even tastes the same things as robots. 

The BCI (Brain-Computer interface) VR (Virtual reality) headsets make it possible. That system transmits even tastes from robots to users. The BCI must just know the brain area, where certain signal belongs, and it can transmit a sense of touch and smell. 

The system can also use similar systems that transmit a sense of touch to the system, connected with the tongue. The system can also use bio-printed togues with living neurons. They are connected to the computers. Researchers can use the bio-printed olfactory coil connected with microchips in that mission. Maybe in the future. We have laboratories where cloned tongues and olfactory coils can be used as chemical sensors. Those sensors can send their data through the Internet all over the world. 

This thing is called robot-based augmented reality. In factories, the operators can use one robot that manufactures the first car. And then those operators can scale that model over the network. 


https://www.freethink.com/robots-ai/general-purpose-robots


https://www.freethink.com/ar-vr/device-hacks-nervous-system-to-bring-touch-to-virtual-worlds


https://www.freethink.com/ar-vr/galea-beta


https://scitechdaily.com/1000x-faster-ultrafast-photonics-chip-reshapes-signal-processing/




Comments

Popular posts from this blog

The new 3D printers are coin-size systems.

"The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation. Credit: Sampson Wilcox, RLE" (Scitech, Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket) Researchers created a 3D printer that is coin-size. That kind of printer can create things like microchips. But it's possible. Those tiny 3D printers can also work in extremely large-size projects. In simplest models, the 3D printers are positioned on tracks. The 3D printer itself is the tool, that can be part of the modular production systems.  There are visions of high-temperature metal printers installed on the gantry cranes. That makes those crane printers that can make even ship-size things. The crane that the printer controls can move back and forth and the printer can move horizontally. This kind of thing can turn the crane into a high-temperature 3D printer, that

Quantum computers and ultra-fast photonic microchips can danger even the most secure communication.

"Quantum computers could pose a major security risk to current communication systems in 12-15 years with their exponentially greater speed and code-breaking ability. (ScitechDaily, Today’s Most-Secure Communications Threatened by Future Quantum Computers) Quantum computers can break entire binary cryptography. And that makes all communication unsecured. That is one of the greatest threats in quantum computing. And this brings the arms race to the quantum age. The quantum computer can create codes that any binary computer can break. But the quantum computer can also break old-fashioned codes. And that makes it an ultimate weapon and sabotage tool.   Quantum computers can change the measurements of the ammunition in factories by changing the system calibration. Or it can delete databases from the opponent's computer systems. This thing can delete all SIM cards from mobile telephones. In peacetime, the hackers that operate using quantum systems can steal the names of the counter-

Electric power innovations. Fuel cells in aircraft and solar panels over Arizona canal.

  "ZEROe teams powered on the iron pod, the future hydrogen-propulsion system designed for Airbus’ electric concept aircraft." (Intersting Engineering, Airbus's ZEROe: First engine fuel cell powers up for hydrogen flight) Electric power innovations. Fuel cells in aircraft and solar panels over Arizona canal.  Airbus Zero is a testbed for fuel cells that are used in commercial aircraft. The problem with aircraft is always noise and pollution. If the aircraft uses electric engines. That decreases noise levels and cleans the air, especially around airfields. Lightweight solar panels that can be installed on the wings and body of aircraft can give electricity to electric engines. And they can extend an aircraft's operational range.   The thing that makes this kind of system interesting is that the "flying cars" or cheap VTOL aircraft can use them as a power source. The hydrogen power cells can give energy to electric aircraft at night time. And that makes them m