Skip to main content

Quantum networks can make the world more secure.


"The 100-kilometer fiber optic cable through which a team of researchers at DTU has successfully distributed a quantum-encrypted key securely. Credit: DTU" (ScitechDaily, An Unprecedented 100 km – Researchers Set New Distance Record With Quantum Keys) 

Researchers made new records. They exchange quantum keys securely within 100 km. And that is the next step for ultra-secured data transmission. The networks are unable to operate if they are not secured. The cornerstone for secure communication is that the systems can exchange keys securely. 




The neurocomputer requires ultra-secure communication. 

The new findings are a big advantage to developing quantum networks. 

The difference between quantum networks and regular networks is that in quantum networks, information travels in qubits. The quantum network's problem is that the system packs information in the physical object. And that makes quantum computers resistant to regular eavesdropping. 

However, the quantum computer is vulnerable to outside effects. In quantum networks, information travels in quantum channels like nanotubes or hollow laser rays. When the quantum network sends information over long distances. It creates the quantum channel using phonon- or acoustic lasers to make the hollow channel through air. Then the system shoots hollow laser rays through it. And qubit can travel through that channel. 

The quantum network is not a synonym for a quantum computer. The quantum computers use quantum networks in their processors. However, the quantum network can transmit information between binary computers, as well as, the quantum network transports information between quantum computers. 


"Researchers from the Institute of Industrial Science, The University of Tokyo have solved a foundational problem in transmitting quantum information, which could dramatically enhance the utility of integrated circuits and quantum computing. Credit: Institute of Industrial Science, The University of Tokyo" (ScitecchDaily, Redefining Quantum Communication: Researchers Have Solved a Foundational Problem in Transmitting Quantum Information)



There are three main types of quantum networks. 


1) All quantum networks. Those systems transport all data in quantum mode. 


2) Hybrid quantum networks. Those networks send only encryption keys in qubits. The rest of the data travels in the form of regular electromagnetic signals. 


3) Virtual quantum networks. Those networks share data in multiple frequencies or multiple lines. The system shares information with multiple transportation lines using TCP/IP. Then it sends information at the same time. In this system, all data pack has a serial number. 


And that helps the receiving system to sort those received data packets into the right order without depending on their arrival order. So the system can mix those data packets into arbitrary order before sending them. Then receiving system can put them into the right order using those serial numbers. 

The quantum network allows ultra-secured communication between computers. And also another ultimate computing system called neurocomputer requires ultra-secured communication. In neurocomputers, the processor units can be at long distances from each other. 

Networked workstations can also act as neurocomputers. Theoretically is possible to transform the entire internet into a giant neurocomputer. The technical platform exists, but a lack of political willingness denies that kind of project. 

The quantum computer is a non-centralized data-handling tool. That system is multiple networked microprocessors. Just like quantum computers neurcomputer can drive multiple operations at the same time. The speed of those operations is not the same as quantum computers. But binary computers are less vulnerable to outside anomalies than quantum computers. 

The neurocomputer is not a synonym for neural networks. The neural network is the thing that interconnects sensors with computers. So a neural network is a sensory system the network that connects things like surveillance cameras with neurocomputers. 


https://scitechdaily.com/an-unprecedented-100-km-researchers-set-new-distance-record-with-quantum-keys/


https://scitechdaily.com/redefining-quantum-communication-researchers-have-solved-a-foundational-problem-in-transmitting-quantum-information/

Comments

Popular posts from this blog

The AI-based PCs will replace current PCs quite soon. A Lenovo director says.

    The AI-based PCs will replace current PCs quite soon. A Lenovo director says.   Lenovo plans to replace current PCs by using new AI-based systems. The AI-based PC is the tool that makes computing more powerful, more effective, and safer than ever before. The Kernel-based AI that guards computers and identifies the users are tools that are required at this time of modern computing. The problem with this type of advantage is that if those AI-based system's servers are in China, makes the PC an ultimate control tool. Another thing is that the host who controls servers can use data collected from the users to create military AI applications. Computer games help to create AI that can respond to all types of actions. And AI also can create things like hypersonic lifting bodies and command systems for military tools. Also, AI can create new types of dual-use systems that control drone swarms in marketing situations for making dragon images in the skies. But the same systems can contro

Quantum computers and ultra-fast photonic microchips can danger even the most secure communication.

"Quantum computers could pose a major security risk to current communication systems in 12-15 years with their exponentially greater speed and code-breaking ability. (ScitechDaily, Today’s Most-Secure Communications Threatened by Future Quantum Computers) Quantum computers can break entire binary cryptography. And that makes all communication unsecured. That is one of the greatest threats in quantum computing. And this brings the arms race to the quantum age. The quantum computer can create codes that any binary computer can break. But the quantum computer can also break old-fashioned codes. And that makes it an ultimate weapon and sabotage tool.   Quantum computers can change the measurements of the ammunition in factories by changing the system calibration. Or it can delete databases from the opponent's computer systems. This thing can delete all SIM cards from mobile telephones. In peacetime, the hackers that operate using quantum systems can steal the names of the counter-

The new 3D printers are coin-size systems.

"The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation. Credit: Sampson Wilcox, RLE" (Scitech, Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket) Researchers created a 3D printer that is coin-size. That kind of printer can create things like microchips. But it's possible. Those tiny 3D printers can also work in extremely large-size projects. In simplest models, the 3D printers are positioned on tracks. The 3D printer itself is the tool, that can be part of the modular production systems.  There are visions of high-temperature metal printers installed on the gantry cranes. That makes those crane printers that can make even ship-size things. The crane that the printer controls can move back and forth and the printer can move horizontally. This kind of thing can turn the crane into a high-temperature 3D printer, that