https://crisisofdemocracticstates.blogspot.com/
Kimmo Huosionmaa
The power source for interstellar traveling is the major problem in those futuristic spacecraft. If we are thinking about Warp-drive, what can travel faster than light, we must realize, that we would need the brand new technology, in the very giant scale. The spacecraft that would travel faster than light must be base the technology, what is ever created in the real life, and making this technology really is the very complicated process. The shape of the spacecraft would be like some science fiction spacecraft, what uses antimatter or WARP-propulsion for increasing the speed of 80-90 percent of the speed of light.
And in this spacecraft would be particle accelerator, what could be like the linear version of "Hedron", what is located in CERN. That accelerator would be like some extreme long tube at the nose of the spacecraft, what might be quite similar, what is planned to use in "Project Thor". The difference would be that the device is equipped with antimatter-motors, what will accelerate it for speed, what is near the speed of light, and then the accelerator would be launched. But the size of this spacecraft would be much bigger, what is planned for "Thor".
The interstellar spacecraft would first accelerate the top speed, what could be something like 90 percent of the speed of light, and the particle accelerator would shoot the capsule to the top speed. The problem of this hypothetical spacecraft would be the size of this thing. The accelerator must be over hundreds of kilometers long, and the electricity, what is used in this gigantic rail gun is very high. This spacecraft would be built in the space, and it would be very huge. If it sometimes would be made.
So there must be the very powerful power source, that this very huge spacecraft would be worked. And after the spacecraft have been shot by the railgun there is no return back. The capsule would fly to Alpha Centaur in about two years, but the problem is the slowing. And of course, the home trip would be difficult. In one scenario this spacecraft would use sophisticated artificial intelligence, and it would have sub-robots, what would build another accelerator at the orbiter of the target star.
This kind of artificial intelligence could also make the copy of the spacecraft if that is damaged. This technology is called "Von Neumann technology". In this case, those robots would search suitable materials from asteroids, what is orbiting the star by using laser-spectrometers. Then the materials would be transferred to the factory, and then those systems can create microchips and other stuff, what is needed for new spacecraft. This kind of systems can help us to colonize the entire galaxy in the distant future, but there are many technical problems to win before the trip to stars would be real.
Subscribe to:
Post Comments (Atom)
Superhydrophobic materials can be more fundamental than we think.
"Research on metal-organic frameworks has led to the development of superhydrophobic surfaces by grafting hydrocarbon chains, which cre...
-
"Quantum computers could pose a major security risk to current communication systems in 12-15 years with their exponentially greater sp...
-
"The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicyc...
-
"ZEROe teams powered on the iron pod, the future hydrogen-propulsion system designed for Airbus’ electric concept aircraft." (In...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.